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We describe analytical and numerical results on the statistical properties of complex eigenvalues and the
corresponding nonorthogonal eigenvectors for non-Hermitian random matrices modeling one-channel
guantum-chaotic scattering in systems with broken time-reversal invariance.
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The statistical properties of nonorthogonal eigenvectors ofvith M fixed andM <N. Then the widthd =2 Im¢&, are of
large nonselfadjoint random matrices have recently beethe same order IV as the mean spaciny(E) between the
characterized in Ref$1-5]. positions of the neighboring resonances along the real energy

Correlations of nonorthogonal eigenvectors are expecte@Xis. In this regime, the resonances may partly or consider-
to determine dynamical properties of classical random sysPly overlap and first-order perturbation theory valid for
tems described by nonselfadjoint operators, such as FokkefMall_resonance overlaps breaks down. Similarly, self-

Planck operatorf6] for example, they also play an important consistent perturbation schemgs2,5,4 assuming many
. . o channels and strongly overlapping resonances are inappli-
role in quantum systems; in Ré8] it was observed that the gy Pping PP

stgtistics of nonortho.gonal eigenve_ctors determines. the prop- detailed analytical understanding of the statistical prop-
erties of random lasing media. This has led to an increaseghties of the resonances in the regime of partial overlap has
interest in eigenvector statistics in nonselfadjoint randonrecently been achieved for the case of systems with broken

matrix ensemblegsee also Ref.7]). time-reversal invariancg8,10]. These results, based on the
In a model for quantum-chaotic scattering, the complexandom matrix approach, are expected to be applicable to a
eigenvalues & ,k=1,... N of a random NXN non- broad class of quantum-chaotic systems. Indeed, the distri-

Hermitian matrix (the so-called “effective Hamiltonian” bution of the widthd" derived in Ref[8] is in good agree-
Hy=H—iT" are used to describe generic statistical proper_ment with available numerical data for quite diverse models

ties of resonances in quantum-chaotic scattesee, Ref. Of guantum-chaotic scatteririd1,12. .
[8], and references thergirfor systems with broken time- Much less is known on properties of nonorthogonal eigen-

reversal invariancéantiunitary symmetry the matricesH vectors. LelRy) and_<|:k| denote th? right and the left eigen-
are randomNx N matrices from the Gaussian unitary en- VEctors of the matri¢ corresponding to the eigenvaldg

semble[9] with joint probability densityP(H)dHxex =Bk~ iYk=E—ilW/2,
_ 2 imi i1an-
(N/2)TrH_]dH. In the limit of !arge_N, t_he mean eigen- HIR)=EJRY, (LdH=(L&,
value densityv(E) for such matrices is given by the semi-
circular law v(E)=(27) *\J4A—E? for |E|<2 (and zero HYLY=E LY, (RJHT=(RJE, (1)

otherwise. The corresponding mean spacing between neig- N ) ]
bouring eigenvalues around the poftin the spectrum is Where the symbols T anti stand for Hermitian conjugation
given by A(E)=1[Nw»(E)]. and complex conjugation, respectively. Except for a set of
measure zero, the eigenvalues are nondegenerate. In this case
. ; . ..1he eigenvectors form a complete, biorthogonal set. They can

f the cl f th h ; :

tics of the closed counterpart of the scattering system; t e normalized to satisfyLJR)=d,. The most natural

Hermitian NX N matrix I'>0 models the_coupling of the \yay to characterize the nonorthogonality of eigenvectors
system to the scattering continuum WA=1,2,... Open s 't consider statistics of the overlap matri®,,

channels. It this rankl <N. For our purposes it can be cho- =(Ly/L,){R|Ry). This matrix features in two-point correla-
sen diagonall’=diag(y;,v2, - - - ,¥w,0, . ..,0). Thecon-  tion functions in non-Hermitian systems, e.g., in description
stants G<y.<e parametrize the strengths of the couplingsof the particle escape from the scattering regiénorm

to the scattering continuum via a given channel |eakage,” see, Ref13]).

=1,... M. Herey.=0 corresponds to a closed channgl Following Ref.[1], consider two correlation functions: a
andy.=1 describes the so-called perfectly coupled channeldiagonal one

Empirical situations correspond to the regime of laidge

The Hermitian matrixd describes the energy-level statis-

0<5>:<N—1 2 0ud(E=8) )]
H,
*On leave from School of Physics and Engineering Physics, N
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O(&1,&)={N" X Opnd(E1=Em) 62— &) (@)
m#n 0(5)

Hy 1

)

Here(- - - )4, stands for an ensemble average cigy. The

correlation functions(2) and (3) characterize the average
nonorthogonality of eigenvectors corresponding to reso-
nances whose positions in the complex plane are close to the
complex energieg§, and&; ,&,. Here §(€) stands for a two-
dimensionals-function of the complex variablé.

In the context of lasing media, the diagonal correld®r
characterises average excess noise fadi®@esermann fac-
tors), and the off-diagonal correlatdB) describes average
cross correlations between thermal or quantum noise emitted
into different eigenmodegl4]. Note that for any ensemble

with orthogonal eigenvectors and complex eigenvalliéier 107
normal matrices O(&) is equal to the mean density of com-
plex eigenvalues, and the off-diagonal correlator vanishes: 10*F
0(51,52)50. —62

Both diagonal and off-diagonal eigenvector correlators 10
were introduced and calculated for the case of Ginibre’s en- A
semble of non-Hermitian matrices in Re¢fl]. For the en- 1o-r an
semble?y pertinent to chaotic scattering, both types of ei- 10

genvector correlators were found recently for the regime of
very strongly overlapping resonances when the widths typi- FIG. 1. Numerical (0) and analytical resultésolid line) for (a)

cally much exceed the mean separafi2/b]. Physically this g aﬁd.O(S) as a function ofY for N=32, andy=0.9; (b)
regime corresponds to a situation where the scattering SYRA(L,.L,)) and O, (L,,L,) for N=32, LX=0.1,, and'y=0.9;’ and

tem is coupled to the continuum via a large numbder 1 of ¢ Oz(Lyx,Ly) for N=32. L,=0.1, andy=0.9.

open channel§8]. In this case the self-consistent Born ap-

proximation is adequatil,2,5,4, a perturbative approxima- )

tion valid in the limit of largeN, largeM, and|&,—&,|#0, ~ Where ~ E=E-IY, v=»(E), A=A(E), and g=(y
providedé, ,&, are well inside the support of the spectrum. A+ 7)/(27v) is the effective (renormalized coupling
nonperturbative expression for the diagonal correl@¢z)  strength. The result foO(&) agrees with that reported in
valid for any number of open channels was obtained in RefRef.[3] confirming the validity of the analytical continuation

[3] by employing a heuristic analytic continuation procedure scheme used there. For the sake of comparison we present
For the case of the resonance widths, this heuristic scheme ligere also the expression for the single-channel resonance
known to reproduce the exact expressiéh It is thus natu-  density defined ad(&) =(N~'2,8(— é‘k)>HN and given by

ral to expect that this procedure is adequate in the case ‘Pé]

eigenvector statistics, too, although this remains to be

proven.
No nonperturbative results for the off-diagonal eigenvalue B n sinh(27Y/A)
correlatorO(&;,&,) have so far been reported, to the best of d(&)=—- ik 2mgY “SA | ©)

our knowledge.

In the present paper we provide exact nonperturbative ex-
pressions for both diagonal and off-diagonal eigenvector cor- i , o
relators valid for the case of a system with broken time-We& have compared these analytical expressions, valid in the
reversal invariancdantiunitary symmetry coupled to the limit N—oo, with direct numerical diagonalizations of finite-
continuum via a single open channéll & 1) with coupling dimensional matriceQ{N, see Flg la) This is of interest
strengthy. The single-channel case is more amenable tince empirically, the ensemble average -);,, is usually
analytical treatment than a general casdX1); under- replaced by an energy average over several spectral win-
standing the single-channel case should be considered asjaws, each of which may typically contain of the order of 10
useful step towards a more complete pict{i8]. or 100 resonances, corresponding to a finite valubl.ofve

Our result for the diagonal correlator is observe that the analytical results describe the numerical data

well, except for small deviations at large valuesYofNu-
) merically it is easier to compute smoothed averages, such as
0(E) = ve“‘”gmi 27aviA sinh27Y/A) (4 the mean number of eigenvalugg(L,,L,)) inside a rectan-
dy 27Y/IA gular domain
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—L,/2<Ref<L,/2
A:
0=-Imés=L,

(6)

in the complex plane. This quantity can be obtained from the

mean densityd(£) by integration over the domaiA. Simi-

larly one can define the functio@,(L,,L,) as the integral

of the diagonal correlato®(&) over the same domain, ob-

taining O;(Ly,L,)=(N"'Zs AOy. Numerical versus

analytical results for these two quantities are plotted in Fig. FIG. 2. Numerical (O) and analytical result&solid line) for the

1(b). distribution of the narrowest resonance f®=2, andy=0.1, W
For the off-diagonal correlatdd(&;,&,) we obtain =0.2, andN=128. Herex=mgnl/A.

0(&;,&)=N(mvIA)2e 2m9(V1TY2)/A

) ) Tr{Re$ (&)1, Re§S'(E) Tz - o2}
Xj,ldhlj,ldx2(9+)\l)(g+)\2) = (&~ E)(En—E")Omn. 9)

x @ T (AT A)/A This relation is valid for arbitrari, but forM > 1 it appears

to be of no obvious utility, due to difficulties in evaluating

the ensemble average of the trace of the residues on the

— e Y10\ N2)/A] @) left-hand side. However for the case of one single open chan-
' nel the scattering matrix can be written as

where Ref; ,=E; ,=EFQ/2 and it is assumed th@~A. oy EE foon L& &
We have also calculated the corresponding smoothed average S(&)= kl:[l E-&° S(&)= kEl ex_gr’
Oa(Ly,Ly)=(N"'2; .¢ .AOmn), by integratingS; and &, :
in Eq. (7) over the domairA. In Fig. 1(c) we compare this which follows, up to an irrelevant “nonresonant” phase fac-
result(valid in the limit of N—<0) with those of numerical tor, from the requirement d&matrix analyticity in the upper
diagonalizations of finite matrices; the agreement is goodhalfplane and unitarity for real energies. Substituting Eq.
already forN=232. (10) into Eq. (9) yields the relation

We have also found a way to calculate exactly the distri- N N
bution f(I') of the widths of the most narrow resonances Omn=(5n &) (En—En) &= & IT En— &
among those falling in a windoWe —W/2,E+W/2] in the (Ea—EF)? k#n En— & k#m & — &
vicinity of a given pointE in the spectrum. Assuming that
the mean numbar=W/A of resonances is larg@$& 1), but  expressing the eigenvector overlap matrix in terms of com-
still W<1 to preserve spectral localityhe density of states plex eigenvalueg [16]. In general it is not possible to ex-
should not change significantly across the spectral window pressO,,, in terms of the eigenvalues alone, but here it is

anlA and this enables us to find the diagonal and off-diagonal
f(I)=[(mgn)/A]e” ™" 2. (8 correlators, Eqs(2) and (3), by averagingO,,, over the
known joint probability density of complex eigenvalyd®]
This distribution is of great interest in the theory of randomfor the single-channel scattering system:
lasing[3]. The functional form of the distribution was found NS _
in Ref. [3] by employing plausible qualitative arguments Py, .. S =e 2y NAE, L EN
yielding Eq.(8), but with a renormalized effective coupling N
replaced by its “weak coupling” limity/27v. We see that Xex;{ - ZE (8E+£§2)}
the difference with exact formula amounts to the factor 2 in K
the exponent for the case of perfect coupling 1. In Fig. 2,
the result(8) is compared to results of numerical diagonal- X O
izations forN=128; E=0, andW=0.2, corresponding to
n~8.15.

In the remainder of this paper, we outline the derivation of ? ~ o s
the results(4), (7), and(8). The main idea is to use the fact O(&)= () 2 YN~1) e~ ANV ~(N-1)yilg= (NM)(E"+E")
that the complex eigenvaluégsonancest, are poles of the
M XM scattering matri>é(5) in the complex energy plane.
Using the standard expression for the scattering matrix in -
terms of the non-Hermitian HamiltoniaHy, (see, e.g., Ref. WhereHy_; stands for a non-Hermitian matrik of the
[8]) the residues corresponding to these poles can be fouriime type asiy but of size N—1)x(N—1), and with
and after some algebraic manipulations we arrive at the foleoupling y replaced by a modified coupling;=y—Im&.
lowing relation: Analogously

x @~ T2\ A/A[ @Y1 (M1 =A)/A

(10

11

y—Zk Im 5k>. (12)

Using this expression one may notice that

X (de(E=H ) (E ~H) 5, (13
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0(&,&)= e—[Nyz—(N—Z);/]IZ',;/Iz\I—S 71—N miticity. More preci_sely,T should _be associa_ted with the
renormalized coupling constamf via the relationg=2/T
N 2 —1. In the limit n>1 the eigenvalueg, are situated in a
xexg — 4 D (E24ERD(E1-E)(E—E5)  narrow vicinity of the unit circle. Their statistics is shown
n=1 [17] to be indistinguishable from that of the complex
x(det(&—HN(E -HN(E-H) eigenenergieg, when the latter are consideréatally, i.e.,
on distances comparable with the mean spadingn par-
><(€§—H))71N72, (14)  ticular, the distances -tr; from the unit circle should be
interpreted as the widths of the resonances.
whereﬂN_z is of the size N—2)x (N—2), and with cou- The form of.E'q.(15) allows one to integrate out the
pling y replaced by a modified coupling,=y—Im¢&,  Phasess; by noticing that
—Im 52: _ _ 2706, 2wd0n1_[ 16, -
In this way the problem is reduced to calculating a corre- fo o fo 27 Ir e rie'’|

lation function of characteristic polynomials of large non-
Hermitian matrices. A closely related object was calculated 2 -
in Ref. [10], and we can adopt those methods to our case. =2 [ (16)
The scaling limitN>1 such that In€; ,=T'; ,~ Q= Re(&, et

—&,)~AxN"1 of the resulting expressions yields the for-
mulas Eqs(4)—(7) above.

Let us briefly comment on a way of calculating the distri-
bution Eq.(8) of the widths of the most narrow resonance in
a given window. Instead of extracting such a quantity from
the joint probability density Eq.12) we find it more conve-
nient to consider

where the summation goes over all possible permutations
{a}=(ay, ...,a,) of the set 1,...n (in fact in the right-
hand side we deal with the object known as “permanent,”
see, e.g., Ref19]). In this way we arrive at a joint probabil-

ity density of the radial coordinates only, and the distribution
Eq. (8) follows after a number of integrations and the limit-
ing proceduren>1.

Pzy, . z0)= (LT DAz, . zp}]? In conclusion, we presented a detailed analytical and nu-
n merical investigation of statistics of resonances and associ-

x8l 1-T-] |m|Zk|2) (15  ated biorthogonal eigenfunctions in a random matrix model

k=1 of single-channel chaotic scattering with broken time-

) ) L o reversal invariance. Among challenging problems deserving
defined for complex variables=r;e” inside the unit circle,  fyyre research we would like to mention extending our re-
ri=|z|=<1. For 0<T=1 this formula has the interpretation gt to the case of more than one channel and to time-
of the joint probability density of complex eigenvalugdor  yeyersal invariant systenid8, 19, as well as the problem of

the ensemble afi X n subunitary matrices and is a very natu- yngerstanding fluctuations of the nonorthogonality overlap
ral “circular” analog of Eq.(12). The similarity is in noway  matrix Opn-

a superficial one, but rather has deep roots in the theory of

scatterind 17]. The parametef controls the deviation of the Financial support by EPRSC Research Grant No. GR/
corresponding matrices from unitarity, much in the same wayl3838/01 (Y.V.F.) and by Vetenskapstdet (B.M.) is ac-

as the parametey controls the deviation oty from Her-  knowledged with thanks.
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