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Statistics of resonances and nonorthogonal eigenfunctions in a model
for single-channel chaotic scattering
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We describe analytical and numerical results on the statistical properties of complex eigenvalues and the
corresponding nonorthogonal eigenvectors for non-Hermitian random matrices modeling one-channel
quantum-chaotic scattering in systems with broken time-reversal invariance.
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The statistical properties of nonorthogonal eigenvector
large nonselfadjoint random matrices have recently b
characterized in Refs.@1–5#.

Correlations of nonorthogonal eigenvectors are expec
to determine dynamical properties of classical random s
tems described by nonselfadjoint operators, such as Fok
Planck operators@6# for example, they also play an importa
role in quantum systems; in Ref.@3# it was observed that the
statistics of nonorthogonal eigenvectors determines the p
erties of random lasing media. This has led to an increa
interest in eigenvector statistics in nonselfadjoint rand
matrix ensembles~see also Ref.@7#!.

In a model for quantum-chaotic scattering, the comp
eigenvalues Ek ,k51, . . . ,N of a random N3N non-
Hermitian matrix ~the so-called ‘‘effective Hamiltonian’’!

HN5Ĥ2 i Ĝ are used to describe generic statistical prop
ties of resonances in quantum-chaotic scattering~see, Ref.
@8#, and references therein!: for systems with broken time
reversal invariance~antiunitary symmetry!, the matricesĤ
are randomN3N matrices from the Gaussian unitary e
semble @9# with joint probability density P(H)dH}exp@
2(N/2)TrH2#dH. In the limit of largeN, the mean eigen-
value densityn(E) for such matrices is given by the sem
circular law n(E)5(2p)21A42E2 for uEu,2 ~and zero
otherwise!. The corresponding mean spacing between ne
bouring eigenvalues around the pointE in the spectrum is
given byD(E)51/@Nn(E)#.

The Hermitian matrixĤ describes the energy-level stati
tics of the closed counterpart of the scattering system;
Hermitian N3N matrix Ĝ.0 models the coupling of the
system to the scattering continuum viaM51,2, . . . open
channels. It has rankM<N. For our purposes it can be cho
sen diagonal,Ĝ5diag(g1 ,g2 , . . . ,gM,0, . . . ,0). Thecon-
stants 0,gc,` parametrize the strengths of the couplin
to the scattering continuum via a given channelc
51, . . . ,M . Heregc50 corresponds to a closed channelc,
andgc51 describes the so-called perfectly coupled chan
Empirical situations correspond to the regime of largeN,
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with M fixed andM!N. Then the widthsGk[2 ImEk are of
the same order 1/N as the mean spacingD(E) between the
positions of the neighboring resonances along the real en
axis. In this regime, the resonances may partly or consid
ably overlap and first-order perturbation theory valid f
small resonance overlaps breaks down. Similarly, s
consistent perturbation schemes@1,2,5,6# assuming many
channels and strongly overlapping resonances are ina
cable.

A detailed analytical understanding of the statistical pro
erties of the resonances in the regime of partial overlap
recently been achieved for the case of systems with bro
time-reversal invariance@8,10#. These results, based on th
random matrix approach, are expected to be applicable
broad class of quantum-chaotic systems. Indeed, the di
bution of the widthsGk derived in Ref.@8# is in good agree-
ment with available numerical data for quite diverse mod
of quantum-chaotic scattering@11,12#.

Much less is known on properties of nonorthogonal eig
vectors. LetuRk& and^Lku denote the right and the left eigen
vectors of the matrixĤ corresponding to the eigenvalueEk
[Ek2 iYk5Ek2 iGk/2,

HuRk&5EkuRk&, ^LkuH5^LkuEk ,

H †uLk&5Ek* uLk&, ^RkuH †5^RkuEk* , ~1!

where the symbols † and* stand for Hermitian conjugation
and complex conjugation, respectively. Except for a set
measure zero, the eigenvalues are nondegenerate. In this
the eigenvectors form a complete, biorthogonal set. They
be normalized to satisfŷLkuRl&5dkl . The most natural
way to characterize the nonorthogonality of eigenvect
is to consider statistics of the overlap matrixOkl
5^LkuLl&^Rl uRk&. This matrix features in two-point correla
tion functions in non-Hermitian systems, e.g., in descript
of the particle escape from the scattering region~‘‘norm
leakage,’’ see, Ref.@13#!.

Following Ref. @1#, consider two correlation functions:
diagonal one

O~E!5K N21 (
k

Okkd~E2Ek!L
HN

~2!

and an off-diagonal one
,
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O~E1 ,E2!5K N21 (
mÞn

Omnd~E12Em!d~E22En!L
HN

.

~3!

Here^•••&HN
stands for an ensemble average overHN . The

correlation functions~2! and ~3! characterize the averag
nonorthogonality of eigenvectors corresponding to re
nances whose positions in the complex plane are close to
complex energiesE, andE1 ,E2. Hered(E) stands for a two-
dimensionald-function of the complex variableE.

In the context of lasing media, the diagonal correlator~2!
characterises average excess noise factors~Petermann fac-
tors!, and the off-diagonal correlator~3! describes averag
cross correlations between thermal or quantum noise em
into different eigenmodes@14#. Note that for any ensembl
with orthogonal eigenvectors and complex eigenvaluesE ~for
normal matrices!, O(E) is equal to the mean density of com
plex eigenvalues, and the off-diagonal correlator vanish
O(E1 ,E2)[0.

Both diagonal and off-diagonal eigenvector correlat
were introduced and calculated for the case of Ginibre’s
semble of non-Hermitian matrices in Ref.@1#. For the en-
sembleHN pertinent to chaotic scattering, both types of
genvector correlators were found recently for the regime
very strongly overlapping resonances when the widths ty
cally much exceed the mean separation@2,5#. Physically this
regime corresponds to a situation where the scattering
tem is coupled to the continuum via a large numberM@1 of
open channels@8#. In this case the self-consistent Born a
proximation is adequate@1,2,5,6#, a perturbative approxima
tion valid in the limit of largeN, largeM, and uE12E2uÞ0,
providedE1 ,E2 are well inside the support of the spectrum.
nonperturbative expression for the diagonal correlatorO(z)
valid for any number of open channels was obtained in R
@3# by employing a heuristic analytic continuation procedu
For the case of the resonance widths, this heuristic schem
known to reproduce the exact expression@8#. It is thus natu-
ral to expect that this procedure is adequate in the cas
eigenvector statistics, too, although this remains to
proven.

No nonperturbative results for the off-diagonal eigenva
correlatorO(E1 ,E2) have so far been reported, to the best
our knowledge.

In the present paper we provide exact nonperturbative
pressions for both diagonal and off-diagonal eigenvector c
relators valid for the case of a system with broken tim
reversal invariance~antiunitary symmetry! coupled to the
continuum via a single open channel (M51) with coupling
strengthg. The single-channel case is more amenable
analytical treatment than a general case (M.1); under-
standing the single-channel case should be considered
useful step towards a more complete picture@15#.

Our result for the diagonal correlator is

O~E!5ne24pgY/D
d

dY H e2pgY/D
sinh~2pY/D!

2pY/D J , ~4!
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where E5E2 iY, n[n(E), D5D(E), and g5(g
1g21)/(2pn) is the effective ~renormalized! coupling
strength. The result forO(E) agrees with that reported in
Ref. @3# confirming the validity of the analytical continuatio
scheme used there. For the sake of comparison we pre
here also the expression for the single-channel resona
density defined asd(E)5^N21(kd(E2Ek)&HN

and given by

@8#

d~E!52n
d

dY H e22pgY/D
sinh~2pY/D!

2pY/D J . ~5!

We have compared these analytical expressions, valid in
limit N→`, with direct numerical diagonalizations of finite
dimensional matricesHN , see Fig. 1~a!. This is of interest
since empirically, the ensemble average^•••&HN

is usually

replaced by an energy average over several spectral
dows, each of which may typically contain of the order of
or 100 resonances, corresponding to a finite value ofN. We
observe that the analytical results describe the numerical
well, except for small deviations at large values ofY. Nu-
merically it is easier to compute smoothed averages, suc
the mean number of eigenvalues^n(Lx ,Ly)& inside a rectan-
gular domain

FIG. 1. Numerical (h) and analytical results~solid line! for ~a!
d(E) and O(E) as a function ofY for N532, andg50.9; ~b!
^n(Lx ,Ly)& and O1(Lx ,Ly) for N532, Lx50.1, andg50.9; and
~c! O2(Lx ,Ly) for N532, Lx50.1, andg50.9.
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A5H 2Lx/2<ReE<Lx/2

0<2Im E<Ly
~6!

in the complex plane. This quantity can be obtained from
mean densityd(E) by integration over the domainA. Simi-
larly one can define the functionO1(Lx ,Ly) as the integral
of the diagonal correlatorO(E) over the same domain, ob
taining O1(Lx ,Ly)5^N21(EkPAOkk&. Numerical versus
analytical results for these two quantities are plotted in F
1~b!.

For the off-diagonal correlatorO(E1 ,E2) we obtain

O~E1 ,E2!5N~pn/D!2e22pg(Y11Y2)/D

3E
21

1

dl1E
21

1

dl2~g1l1!~g1l2!

3eipV(l11l2)/D

3e2pY2(l12l2)/D@epY1(l12l2)/D

2e2pY1(l12l2)/D#, ~7!

where ReE1,25E1,25E7V/2 and it is assumed thatV;D.
We have also calculated the corresponding smoothed ave
O2(Lx ,Ly)5^N21(EmÞEnPAOmn&, by integratingE1 andE2

in Eq. ~7! over the domainA. In Fig. 1~c! we compare this
result ~valid in the limit of N→`) with those of numerical
diagonalizations of finite matrices; the agreement is go
already forN532.

We have also found a way to calculate exactly the dis
bution f (G) of the widths of the most narrow resonanc
among those falling in a window@E2W/2,E1W/2# in the
vicinity of a given pointE in the spectrum. Assuming tha
the mean numbern5W/D of resonances is large (n@1), but
still W!1 to preserve spectral locality~the density of states
should not change significantly across the spectral windo!:

f ~G!5 @~pgn!/D# e2pgnG/D. ~8!

This distribution is of great interest in the theory of rando
lasing@3#. The functional form of the distribution was foun
in Ref. @3# by employing plausible qualitative argumen
yielding Eq.~8!, but with a renormalized effective couplingg
replaced by its ‘‘weak coupling’’ limitg/2pn. We see that
the difference with exact formula amounts to the factor 2
the exponent for the case of perfect couplingg51. In Fig. 2,
the result~8! is compared to results of numerical diagon
izations for N5128; E50, andW50.2, corresponding to
n'8.15.

In the remainder of this paper, we outline the derivation
the results~4!, ~7!, and~8!. The main idea is to use the fac
that the complex eigenvalues~resonances! Ek are poles of the
M3M scattering matrixŜ(E) in the complex energy plane
Using the standard expression for the scattering matrix
terms of the non-Hermitian HamiltonianHN ~see, e.g., Ref.
@8#! the residues corresponding to these poles can be fo
and after some algebraic manipulations we arrive at the
lowing relation:
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Tr$Res@Ŝ~E!#E5En
Res@Ŝ†~ Ẽ* !# Ẽ* 5E

m*
%

5~Em* 2En!~En2Em* !Omn . ~9!

This relation is valid for arbitraryM, but forM.1 it appears
to be of no obvious utility, due to difficulties in evaluatin
the ensemble average of the trace of the residues on
left-hand side. However for the case of one single open ch
nel the scattering matrix can be written as

S~E!5)
k51

N E2Ek*

E2Ek
, S†~E!5)

k51

N E* 2Ek

E* 2Ek*
, ~10!

which follows, up to an irrelevant ‘‘nonresonant’’ phase fa
tor, from the requirement ofS-matrix analyticity in the upper
halfplane and unitarity for real energies. Substituting E
~10! into Eq. ~9! yields the relation

Omn5
~En2En* !~Em2Em* !

~En2Em* !2 )
kÞn

N En2Ek*

En2Ek
)
kÞm

N Em* 2Ek

Em* 2Ek*
~11!

expressing the eigenvector overlap matrix in terms of co
plex eigenvaluesEk @16#. In general it is not possible to ex
pressOmn in terms of the eigenvalues alone, but here it
and this enables us to find the diagonal and off-diago
correlators, Eqs.~2! and ~3!, by averagingOmn over the
known joint probability density of complex eigenvalues@10#
for the single-channel scattering system:

P~E1 , . . . ,EN!5e2Ng2/2 g12N uD$E1 , . . . ,E N%u2

3expF2
N

4 (
k

~E k
21E k*

2!G
3dS g2(

k
Im EkD . ~12!

Using this expression one may notice that

O~E!5 ~ g̃1
N22/gN21! e2(1/2)[Ng22(N21)g̃1]e2(N/4)(E 21E * 2)

3^det~E2H †!~E* 2H!&H̃N21
, ~13!

where H̃N21 stands for a non-Hermitian matrixH of the
same type asHN but of size (N21)3(N21), and with
coupling g replaced by a modified couplingg̃15g2Im E.
Analogously

FIG. 2. Numerical (h) and analytical results~solid line! for the
distribution of the narrowest resonance forb52, andg50.1, W
50.2, andN5128. Herex5pgnG/D.
2-3
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O~E1 ,E2!5 e2[Ng22(N22)g̃]/2g̃2
N23 g12N

3expF2
N

4 (
n51

2

~E n
21E n*

2!G ~E12E1* !~E22E2* !

3^det~E12H †!~E1* 2H †!~E22H!

3~E2* 2H!&H̃N22
, ~14!

whereH̃N22 is of the size (N22)3(N22), and with cou-
pling g replaced by a modified couplingg̃25g2Im E1
2Im E2.

In this way the problem is reduced to calculating a cor
lation function of characteristic polynomials of large no
Hermitian matrices. A closely related object was calcula
in Ref. @10#, and we can adopt those methods to our ca
The scaling limitN@1 such that ImE1,25G1,2;V5Re(E1
2E2);D}N21 of the resulting expressions yields the fo
mulas Eqs.~4!–~7! above.

Let us briefly comment on a way of calculating the dist
bution Eq.~8! of the widths of the most narrow resonance
a given window. Instead of extracting such a quantity fro
the joint probability density Eq.~12! we find it more conve-
nient to consider

P~z1 , . . . ,zn!} ~1/Tn21! uD$z1 , . . . ,zn%u2

3dS 12T2)
k51

n

Imuzku2D ~15!

defined for complex variableszi5r ie
u i inside the unit circle,

r i5uzi u<1. For 0<T<1 this formula has the interpretatio
of the joint probability density of complex eigenvalueszi for
the ensemble ofn3n subunitary matrices and is a very nat
ral ‘‘circular’’ analog of Eq.~12!. The similarity is in no way
a superficial one, but rather has deep roots in the theor
scattering@17#. The parameterT controls the deviation of the
corresponding matrices from unitarity, much in the same w
as the parameterg controls the deviation ofHN from Her-
04520
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miticity. More precisely,T should be associated with th
renormalized coupling constantg via the relationg52/T
21. In the limit n@1 the eigenvalueszk are situated in a
narrow vicinity of the unit circle. Their statistics is show
@17# to be indistinguishable from that of the comple
eigenenergiesE, when the latter are consideredlocally, i.e.,
on distances comparable with the mean spacingD. In par-
ticular, the distances 12r i from the unit circle should be
interpreted as the widths of the resonances.

The form of Eq. ~15! allows one to integrate out th
phasesu i by noticing that

E
0

2pdu1

2p
. . . E

0

2pdun

2p )
k, j

ur ke
iuk2r je

iu j u2

5(
$a%

r 1
2a1 . . . r n

2an , ~16!

where the summation goes over all possible permutati
$a%5(a1 , . . . ,an) of the set 1, . . . ,n ~in fact in the right-
hand side we deal with the object known as ‘‘permanen
see, e.g., Ref.@19#!. In this way we arrive at a joint probabil
ity density of the radial coordinates only, and the distributi
Eq. ~8! follows after a number of integrations and the lim
ing proceduren@1.

In conclusion, we presented a detailed analytical and
merical investigation of statistics of resonances and ass
ated biorthogonal eigenfunctions in a random matrix mo
of single-channel chaotic scattering with broken tim
reversal invariance. Among challenging problems deserv
future research we would like to mention extending our
sults to the case of more than one channel and to ti
reversal invariant systems@18,19#, as well as the problem o
understanding fluctuations of the nonorthogonality over
matrix Omn .
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